Spatial Spillover Effects of Tourism on Economic Growth in Iranian Provinces: Spatial β Convergence

Document Type : Research Paper

Authors

1 Assistant Professor in Economics, Kharazmi University

2 MSc Student of Economic and Social Systems, Kharazmi University

Abstract

Extended Abstract
Tourism industry is now being considered in most countries as an economic sector playing an important role in development. Tourism is also a potential resource that enables nations to reach substantially social, cultural and economic benefits.
The main purpose of this study is investigating spatial spillover effects of tourism on economic growth of Iran’s selected provinces and also the role of tourism in the convergence rate of them. For this purpose, the β convergence of the economic growth of Iran’s 18 provinces is estimated with Spatial Durbin Model during the periods 2006 to 2014, and then the role of tourism on speed of convergence has been investigated. The results of Spatial Durbin Model indicate that economic growth of selected provinces has spatial effects and economic growth of each province is influenced by its neighbors is confirmed between provinces. Tourism is also one of the variable effecting on the provinces economic growth and its effects are significant in speed of convergence. The results indicate that the development of tourism in the country can increase the speed of provinces convergence
 
Introduction
Since the 1950s, the rapid growth has been the main characteristic of the demand for the tourism industry. According to the World Tourism Organization, the total number of tourists in the world increased from 25 million persons in 1950 to 160 million persons in 1970, 429 million persons in 1990, 689 million persons in 2001, 919 million persons in and 1.1 billion in 2013, with an average annual rate of increase of 4.34%. Asia and the Pacific Rim had the highest growth rates (UNWTO, 2014).
Due to the fact that Iran has very rich tourism attractions and an ancient civilization it is hoped that one day it reaches its real position in the world tourism industry through attempt towards development and ever-increasing prosperity of this industry and enjoys profits and returns obtained from prosperity and growth of the intended industry.
The main purpose of this study is investigating spatial spillover effects of domestic and foreign tourism on economic growth of Iran‘s selected provinces and also the role of tourism in the convergence rate of them. For this purpose, the β convergence of the economic growth of Iran’s 18 provinces is estimated with Spatial Durbin Model during the periods 2006 to 2014, and then the role of tourism on speed of convergence has been investigated.
 
Methodology
The economic growth model is open, which means that we could analyze the effect of one variable on economic growth by adding that variable into the model under the premise of the key factors being under control. According to the purpose of the present study, we introduced the initial average GDP and variables representing tourism development and its spatial correlations into the model.
Tobler (1979) summarizes the first theory of geography as, “Everything is related to everything else but near things are more related than distant things.” According to this theory, no region is isolated, and every region is always in development according to its correlation with other regions. Elements, products, knowledge and information are in continuous exchange, the cost of which is positively correlated with distance. Thus, interactions between areas with close spatial positions are also relatively significant. Omitting the spatial correlations in an econometric analysis when variables are spatially correlated would lead to bias (Anselin, 1988). The interaction effect inside a country is more significant than across countries due to higher market openness. Thus, we needed to give special attention to the spatial correlations among variables because we considered 18 provinces of Iran between 2006 and 2014 as the sample and using a β convergence model as the frame. The basic model is a β -convergence model with built-in economic growth spatial correlations.
 
Conclusion
The results of Spatial Durbin Model indicate that economic growth of selected provinces has spatial effects and economic growth of each province is influenced by its neighbors is confirmed between provinces. Tourism is also one of the variable effecting on the provinces economic growth and its effects are significant in speed of convergence. The results indicate that the development of tourism in the country can increase the speed of provinces convergence.
With respect to the outcome of our analysis, the outcome would be biased without considering the spatial correlation of tourism when analyzing the relationship between tourism development and economic growth. By introducing the spatial correlation, we were able to separate the stimulatory effects into the direct effects of tourism development on local economic growth and the indirect effect resulting from the spatial spillover effect of economic growth.
 
Keywords: Tourism, Economic Growth, Spatial Panel Data, Spatial Spillover, Beta Convergence.
 
References

Fallahi, F. and Rodriguez, G. (2007). Convergence in the Canadian Provinces; Evidence Using Unemployment Rates; 54th Annual North American, Meetings of the Regional Science Association International, Savannah, USA.
Ma, T., Hong, T. and Zhang, H. (2014); Tourism spatial spillover effects and urban economic growth.  Journal of Business Research, Vol. 68, Issue 1: 74-80.
Merida, A.L., Carmona, M., Congregado, E., Golpe, and Antonio A. (2016). Exploring the regional distribution of tourism and the extent to which there is convergence, Tourism Management, Vol. 57:  225-233.
Oh, C.O. (2005). The contribution of tourism development to economic growth in the Korean economy, Tourism Management, Vol. 26, Issue 1: 39-44.
Phillips, P.C.B. and Sul, D. (2007). Transition modeling and econometric convergence tests, Econometrica, 75(6): 1771-1855.  

 

Keywords


  1. احد نژاد روشتی، محسن و صالحی میشانی، حیدر (1391). ارزیابی توزیع فضایی زیرساختهای گردشگری و تعیین نقش فرایندهای اقتصادی-سیاسی و رشد فیزیکی شهرها در شکل گیری آن (مطالعه موردی شهر زنجان)، دو فصلنامه مطالعات گردشگری، دوره 1، شماره 1: 105-91.

2.اسلاملوئیان، کریم و ذاکری، مریم (1388). بررسی تاثیر قانون بانکداری بدون ربا بر تابع تقاضای پول، فصلنامه علمی- پژوهشی اقتصاد اسلامی، دوره 9، شماره 35: 160-129.

3.خوش اخلاق، رحمان، نیافرد، فاطمه و دلالی اصفهانی، رحیم (1390). تخمین تابع تقاضای اکوتوریسم (مطالعه موردی شهراصفهان)، فصلنامه علوم اقتصادی، دوره 5، شماره 15: 43-31.

4.رفیعی، هادی، پارساپور، سارا و رهنما، علی (1395). عوامل اقتصادی اجتماعی مؤثر بر ماندگاری گردشگران داخلی (مورد مطالعه شهر مشهد)، دوفصلنامه مطالعات اجتماعی گردشگری، دوره 4، شمارۀ 7: 35-8.

5.رمضانی، بهمن و نیکدل، نسرین (1389). شناخت عوامل مؤثر بر افزایش مدت ماندگاری گردشگران در شهرستان صومعه سرا، چشم انداز جغرافیایی، دوره 5 ، شماره 13: 59-48.

6.زرآبادی، سعیده و عبدالله، بهار (1392). ارزیابی عوامل موثر در توسعه صنعت گردشگری منطقه آزاد چابهار با بهره گیری از روش فرایند تحلیل شبکه­ای، نشریه علمی-پژوهشی انجمن علمی معماری و شهرسازی ایران، شماره 6: 48-37.

7.سلیمانی مقدم، محمد و اسلامی، قاسم (1390). نقش زیر ساخت­های اقامتی در فعالیت­های گردشگری شهر رشت،چشم انداز جغرافیایی (مطالعات انسانی)، دوره6، شماره 17: 115-105.

8.سقایی، مهدی؛ خواجوی، محمد و اسلامی، علیرضا (1393). واکاوی ضریب ماندگاری پایین گردشگران در استان گلستان با تأکید بر گردشگران عبوری، اولین همایش بین المللی علمی راهبردی توسعه گردشگری جمهوری اسلامی ایران، چالشها و چشم اندازها، استان خراسان رضوی، مشهد.

9.شاه آبادی، ابوالفضل و سیاح، علی(1392). تاثیر زیر ساخت­های اقتصادی بر گردشگری، رویکرد پنل دیتا، مقایسه­ی تطبیقی کشورهای درحال توسعه و توسعه یافته، مجله برنامه ریزی و توسعه،گردشگری، دوره 2، شماره 7: 43-25.

10.شماعی، علی و موسی وند، جعفر (1390). سطح بندی شهرستان­های استان اصفهان از لحاظ زیرساخت­های گردشگری با استفاده از مدل Topsis و AHP ، فصلنامه مطالعات و پژوهش­های شهری و منطقه­ای، دوره 3، شماره 10: 40-23.

  1. فروغ­زاده، سیمین؛ شریعتی مزینانی، سعید؛ دانایی سیج، مجید (1391). تحلیل جامعه شناختی مدت اقامت زائران ایرانی در شهر مشهد، مطالعات اجتماعی ایران، دوره 6، شماره 3 و 4: 179-157.
  2. قاسمی، فروغ، زیاری، کرامت ا... و صادقی، محمد (1393). تحلیل کیفی و مکانی مراکز اقامتی شهر شیراز جهت توسعه گردشگری (با تاکید بر هتل­ها)، جغرافیا و آمایش شهری- منطقه­ای، شماره 11 :13-1.
  3. للحج، رفیعه و ستاری، حسن (1393). بررسی نقش فضاهای عمومی شهر در ماندگاری توریسم و بهبود گردشگری، اولین همایش ملی توریسم و گردشگری سبز.
  4. نصرالهی،خدیجه، جهانبازی، ندا و ناصری، طاهره (1391). رده بندی استان­های کشور برحسب جاذبه­های گردشگری، فصلنامه علمی پژوهشی مطالعات مدیریت گردشگری ، دوره 9، شماره 28: 37-17.
  5. نظری، محسن، اسفیدانی، محمد رحیم و طباطبائی، سید مهدی (1396). ارزیابی عوامل مؤثر بر جذب گردشگران بین المللی به ایران با استفاده از مدل جاذبه، تحقیقات اقتصادی، دوره 52، شماره 1: 243- 215.
  6. وارثی، حمیدرضا، تقوایی، مسعود و شاهیوند، احمد (1390). تحلیلی بر وضعیت زیرساختهای گردشگری در شهر اصفهان، مجله جغرافیا و برنامه­ریزی محیطی، دوره 32، شماره 44: 91-112.
  7. Aslan, A., Kula, F. and Kaplan, M. (2009). International tourism demand for Turkey: A dynamic panel data approach, A Research Journal of International Studies, Vol.9, Issue 6: 64-75.
  8. Alegre, J. and Pou, L. (2006). The length of stay in the demand for tourism, TourismManagement, 27(6): 1343-1355.
  9. Barros, C.P., Butler, R. and Correia, A. (2010). The length of stay of golf tourism: A survival analysis, Tourism Management, Vol. 31, Issue. 1, PP: 13-21.
  10. Barros, C.P. and Machado, L.P. (2010). The length of stay in tourist, Annals of Tourism Research, 37(3): 692-706.
  11. Barros C.P. and Correia A. (2008). Survival analysis in tourism demand: the length of stay in Latin American destinations, Tourism Analysis, 13(4): 329-340.
  12. Baltagi, B.H. (2005). Econometric Analysis of Panel Data, New York, John Wiley.
  13. Griglon, A.B., Borgers, A.W.J., Kemprrman, A.D.A.M. and Timeermans, H.J.P. (2014). Vacation length choice: a dinamic mixed multinomial logit model, Tourism Management, Vol. 41: 158-167.
  14. Garcia, E., and Raya, J. (2008). Length of stay for low-cost tourism, Tourism Management, 29(6): 1064 – 1075.
  15. Gearing, C. (1974). Abolishing a measure of touristic attractiveness, Journal of Travel Research, 12(4): 1–8.
  16. Hu, Y. and Ritchie, J.R. (1993). Measuring destination attractiveness: A contextual approach, Journal of Travel Research, 32)2:( 25-34.
  17. Hurn, A. S. and. Muscatelli, V.A. (1992). Testing Superexogeneity: The Demand for Broad Money in the UK, Oxford Bulletin of Economics and Statistics, 54(4): 543–556.
  18. Ipatov, V. (2012). Factors affecting the development of the tourism industry, http://world-tourak.blogspot.my/2012/10/factors-affectingdevelopment of.html.
  19. Jaafar, M. and Khoshkam, M.(2014).Length of Stay and Tourism Facility Assessment: The Viewpoint of Malaysian Tourists at Langkawi , Article available at http://www.shs-conferences.org.
  20. Kazuzuru, B. (2014). Determinants of Tourist Length of Stay in Tanzania, International Journal of Business and Social Science, 5(9): 204-214.
  21. Kercher, B. and Lau, G. (2008).Movement patterns of tourists within a destination, Tourism Geographies, 10(3): 355–374.
  22. Khadaroo, J. and Seetanah, B. (2008). The role of transport infrastructure in international tourism development, Tourism Management, 29(5): 831–840.
  23. Lim, C. (1997). An Econometric classification and review of international tourism demand models, Tourism Economics, 3(1): 69-81.
  24. Law C.M. )1996).Urban tourism attraction visitors to large cities, Man sell. Publishing Limited, London.
  25. Mill, R.C. and Morrison, A.M. (1992). The Tourism System: An Introductory Text, 2nd ed, Prentice Hall, New Jersey.
  26. Salmasi, L., Celidoni, M. and Procidano, I. (2012). Length of stay: Price and income semielasticities at different destinations in Italy, International Journal of Tourism Research, Vol.14, Issue. 6: 515-530.
  27. Thrane, C. (2012). Tourists’ length of stay: the case of international summer visitors to Norway, Tourism Economics, 18(5): 1069–1082.
  28. Vanhove, N. (2005). The Economics of Tourism Destinations, U.K. Elsevier Publishing.
  29. Witt, S.F. and Witt, C.A. (1995). Forecasting tourism demand: A review of empirical research, International Journal of Forecasting, 11(3): 447- 475.
  30. Wang, Y., Zhang, Y., Xia, J. and Wang, Z. (2008). Segmenting the mature travel market by motivation, International Journal of Data Analysis Techniques and Strategies, 1(2): 193-209.
  31. Wu, C.L. and Carson, D. (2008). Spatial and temporal tourist dispersal analysis in multiple destination travel, Journal of Travel Research, Vol. 46, Issue. 3: 311-317.
  32. Xiang, Z. and Fesenmaier, D.R. (2008). Identifying the online tourism domain: Implications for search engine development for tourism, http://www.springerlink.com/q4543kq172w34477.
  33. Yusup, M.F., Kanyan, A., Kasuma, J., Kamaruddin, H. and Adlin, J. (2016). Determinants of factors and the growth of tourism industry in Langkawi Island, Journal of Scientific Research and Development, 3(2): 13-20.