Determining effect of meteorological parameters on tourism of metropolises based on presenting integrated spatial-temporal predicting model for air pollutants (case study: Tehran)

Document Type : Research Paper

Authors

1 Assistant Professor, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 MSc student of Civil and Environmental Engineering, Faculty of Civil Engineering, Guest student in Babol Noshirvani University of Technology (MSc student of Sirjan University of Technology)

3 MSc graduated of Civil and Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran.

Abstract

Environmental problems in tourist places is one of the major problems of tourism industry, also air pollution in tourist areas is one of the most important environmental problems. Tehran is capital of Iran and it has plenty of tourist sites. The air pollution has hit the tourism in this city. Therefore, this research was carried out for modeling, control and manage of air pollution in Tehran. Based on the previous models presented for air pollution management, the possibility of simultaneous prediction of pollution based on time and place variables has been less considered. Therefore, in this research, for the first time, a spatial-temporal model for pollution management in Tehran was presented. In this research, the spatial model in the GIS environment for each pollutant was defined. Then, based on a Python program, modeling by neural networks in GIS environment for each pollutant at each arbitrary location of the city was implemented. According to validation of model, error values were acceptable. This research model can predict air pollutants, and therefore tourism desirability of each cities point can be estimated based on air pollutants concentration.

Keywords


  1.  Arasa,R., Soler,M.R.,Ortega,S., Olid,M., & Merino, M. (2010). Performance evaluation of MM5/MNEQA/CMAQ air quality modelling system to Forecast ozone concentrations in Catalonia, Tethys, 7(2010):11–23.
  2. Becken, S., Jin, X., Zhang, C., & Gao, J. (2017). Urban air pollution in China: destination image and risk perceptions, J. Sustain. Tour, 25(2017): 130–147.
  3. Duché, S. (2013). La Pollution De L'Air En Région Parisienne: Exposition Et Perception Sur Les Sites Touristiques, Géographie. Université Paris-Diderot - Paris VII, 2013. Français.
  4. Dutot, A.L., Rynkiewicz, J., Steiner, F.E., & Rude, J. (2007). A 24–h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions, EnvironmentalModelling & Software, 22(2007):  1261–1269.
  5. Ebrahimi Ghadi, M., Qaderi, F., & Babanezhad E. (2018). Prediction of Mortality Resulted from NO2 Concentration in Tehran by Air Q+ Software and Artificial Neural Network, Journal of Environmental Science and Technology, doi.org/10.1007/s13762-018-1818-4.
  6.  EEA (European Environment Agency). (2013). Every Breath We Take: ImprovingAirQualityinEurope, EEA Signals 2013 Report, Copenhagen.
  7.  Elangasinghe, M.A., Singhal, N., Dirks, K.N., & Salmond, J.A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis, Atmospheric Pollution Research, 5 (2014): 696–708.
  8.  Gardner, M.W., & Dorling, S.R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations, AtmosphericEnvironment, 34(2014): 171–176.
  9.  Hoffman, S. (2006). Short-Time Forecasting of Atmospheric NOx Concentration by Neural Networks, Environmental Engineering Science 23(2014): 603-609.
  10.  Hooyberghs,J.,Mensink,C.,Dumont,G.,Fierens,F., & Brasseur, O. (2005). A Neural network forecast for daily average PM10 concentrations in Belgium, AtmosphericEnvironment, 39(2005): 3279–3289.
  11. Karatzas, K.D., Papadourakis, G., & Kyriakidis, I. (2008). Understanding and forecasting atmospheric quality parameters with the aid of ANNs, Atmospheric Environment 12 (2008): 2580-2587.
  12.  Kolehmainen, M., Martikainen, H., & Ruuskanen, J.(2001). Neural networks and periodic components used in air quality forecasting, Atmospheric Environment, 35(2008):  815–825.
  13.  Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H.,Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., & Cawley, G. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki,  AtmosphericEnvironment,  37(2003): 4539–4550.
  14. Liu, L., Poon, R., Chen, L., Frescura, A., Montuschi, P., Ciabattoni, G., et al. (2008). Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children, Environ. Health Perspect, 117(2008):  668–674.
  15.  Luecken,D.J.,Hutzell,W.T., & Gipson,G.L. (2006). Development and analysis of air quality modeling simulations for hazardous air pollutants, AtmosphericEnvironment, 40 (2006): 5087–5096.
  16. Malczewski, J. (1999). GIS and Multi Criteria Decision Analysis, John Wiley Press 392PP.
  17. Martín, M.L., Turias, I.J., González, F.J., Galindo, P.L., Trujillo, F.J., Puntonet, C.G., & Gorriz, J.M. (2008). Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks, Chemosphere, 70(2008):  1190-1195.
  18. Middleton, D.R. (1998). A new box model to forecast urban air quality: BOXURB, EnvironmentalMonitoringandAssessment, 52(1998): 315–335.
  19.  Monteiro, A., Vautard, R., Borrego, C., & Miranda, A.I. (2005). Long–term simulations of photo oxidant pollution over Portugal using the CHIMERE model, AtmosphericEnvironment, 39 (2005): 3089–3101.
  20. Poudyal, N.C., Paudel, B., & Green, G.T. (2013). Estimating the impact of impaired visibility on the demand for visits to national parks, Tour. Econ, 19(2013):  433–452.
  21. Sajjad, F., Noreen, U., & Zaman, K. (2014). Climate change and air pollution jointly creating nightmare for tourism industry, Environ. Sci. Pollut. Res, 21(2013): 12403–12418.
  22.  Shi,J.P., & Harrison, R.M. (1997). Regression modelling of hourly NOx and NO2 Concentrations in urban air in London, Atmospheric Environment, 31 (1997): 4081–4094.
  23.  Sofuoglu, S.C., Sofuoglu, A., Birgili, S., & Tayfur, G. (2006). Forecasting Ambient Air SO2 Concentrations Using Artificial Neural Networks, Energy Sources Part B Economics Planning & Policy, 1(2006):  127-136.
  24.  Yi, J.S., & Prybutok, V.R. (1996). A neural network model forecasting for Prediction of daily maximum ozone concentration in an industrialized Urban area, EnvironmentalPollution, 92 (1996): 349–357.
  25. Zhang, A., Zhong, L., Xu, Y., Wang, H., & Dang, L. (2015). Tourists' perception of haze pollution and the potential impacts on travel: reshaping the features of tourism seasonality in Beijing, China,  Sustainability, 7(2015):  2397–2414.